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A method for numerical simulation of the unsteady, three-dimensional, viscous
Navier–Stokes equations for turbulent nonlinear free-surface flows is presented and
applied to simulations of a laminar standing wave and turbulent open-channel flow
with a finite-amplitude surface wave. The solution domain is discretized with a
boundary-orthogonal curvilinear grid that moves with the free surface, allowing
surface deformations to be smoothly resolved down to the numerical grid scale.
The nonlinear kinematic and dynamic boundary conditions for boundary-orthogonal
curvilinear coordinates are developed and discussed with a novel approach for ad-
vancing the free surface in curvilinear space. Dynamic large-eddy-simulation tech-
niques are used to model subgrid scale turbulence effects. The method is shown to
correctly produce the shape of a nonlinear free-surface wave and its decay due to
viscosity. Application to finite-amplitude waves moving over a turbulent channel
flow allows demonstration of the clear differences between a channel flow with and
without waves, particularly the instantaneous turbulence structure. An interesting
sidelight is the appearance of short-crested cross-channel surface waves caused by
natural resonance. c© 1999 Academic Press
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1. INTRODUCTION

Free-surface flows with associated surface wave phenomena are ubiquitous in both engi-
neering and geophysical applications. Until the seminal marker-and-cell (MAC) numerical
simulations of Harlow and Welch [1], the understanding of the kinematic and dynamic
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effects of surface waves was limited to considerations of inviscid wave theory, viscous
wave theory for small amplitude waves, and parameterizations of field data and laboratory
experiments. In the past 30 years, numerical simulation methods (e.g., [2–4]) have proved
valuable for investigating wave behavior. It is only recently that numerical methods have
been applied to free surface flows with accurate resolution of viscous effects below signif-
icant surface deformations (e.g., [5–7]); however, these methods have thus far only been
applied in the study of laminar vortex flows.

To date, the viscous free-surface numerical simulation methods presented in the literature
have been limited by one or more of the following simplifications: (1) two space dimen-
sions, (2) steady state, (3) small-amplitude waves, (4) laminar flow, (5) no boundary-layer
resolution, (6) inability to handle steep waves, and (7) use of high-viscosity fluid (rather
than water). In addition there exists a large body of literature that exploits the irrotational ap-
proximation for surface waves and solves the inviscid equation set to determine free-surface
motion. The different methods and their limitations have been discussed in recent reviews
of numerical methods for free-surface simulation [8, 9]. The methods used for turbulent
free-surface simulation in the literature have been direct Navier–Stokes simulation (DNS)
[10–12], applied to small free-surface motions, and Reynolds-averaged Navier–Stokes sim-
ulations (RANS), typically applied to steady flows (e.g., [13]) and more recently to unsteady
flows (e.g., [14]). There does not appear to be any published use of large-eddy-simulation
(LES) methods applied to free-surface flows prior to the present work. While DNS meth-
ods area priori capable of resolving all the turbulent structure in a simulation, they have
thus far been limited to simulation of small-amplitude surface deformations, generally with
linearized free-surface boundary conditions. Steady-state RANS computations have been
used extensively in the naval architecture community to model the waves developed by ship
hull forms. The capability of unsteady RANS methods to resolve turbulent eddies near the
free surface has not yet been demonstrated.

The lack of a comprehensive method with the capability of simulating unsteady, viscous,
turbulent flows with finite-amplitude waves can be attributed to the problems noted by
Sarpkaya [15], namely, that“...the modeling of free-surface phenomena still poses difficul-
ties, not only because of an insufficient understanding of the physics of the vorticity/free-
surface interaction, but also because of the necessity to devise and use mathematical formu-
lations, numerical schemes, and physical-property experiments of far greater complexity
than had hitherto been used....”

This provides the motivation for the present work: the development of a numerical method
that is: (1) not limited by the simplifications used in prior free-surface simulation methods,
(2) capable of simulating the physics of turbulent free-surface interactions, (3) straight-
forward in its implementation (using the least-complicated second-order numerical algo-
rithms), and (4) formulated to handle steep or overturning waves. This last objective is
the primary numerical challenge. This paper demonstrates the ability of the numerical
method to simulate finite-amplitude surface waves in a formulation that is not limited to
single-valued waves. The method can be extended to overturning waves with some caveats:
(1) fine grid resolution must be applied to resolve the overturn in the curling portion of a
wave—this implies the need for adaptive grid refinement; (2) the kinematic free surface
boundary condition does not apply once the wave surface becomes multiply connected, and
therefore, a new model is required for the physics of free-surface motion after the crest
touches the underlying free surface; (3) the present grid generation method must be mod-
ified to smoothly handle a multiply connected material surface. Each of these issues is an
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area requiring significant further research, for which the present work is a necessary first
step.

The numerical approach in this paper is a free-surface/moving-grid adaptation of the
method developed by Zanget al. [16] for internal-flow simulations. This finite-volume
method employs second-order-accurate discretization in time and space of the primitive
variables in curvilinear coordinates. Extensive simulation experience [17–21] has demon-
strated the efficiency and accuracy of the code for computation of four-dimensional turbulent
flow problems at the scales simulated herein. The Navier–Stokes equations are solved by
a fractional-step method in conjunction with a multigrid solution of the pressure Poisson
equation. The free-surface algorithm developed in this paper has been designed to work
within the framework of Zanget al.’s method [16], but is general enough to be adapted to
other methods. Our approach to simulating a viscous free-surface flow uses a boundary-
fitted grid that moves with each time step to conform to the free surface [5, 6, 22]. This
eliminates difficulties in treating the dynamic boundary condition at the free surface that oc-
cur in fixed-grid methods (e.g., [2, 23]). Computation of the free-surface motion is through
an algorithm that decouples the grid generation and the flow solution, providing a flexible
framework for modifying and adapting the method. Large-eddy-simulation techniques [18]
are used to model subgrid-scale turbulence effects that cannot be adequately resolved on
the computational grid. The curvilinear, boundary-fitted grid is generated with the Poisson
equation method using an adaptation of the 3DGRAPE/AL code [24].

The following sections of this paper present the mathematical formulation of a viscous
incompressible free-surface flow, a description of the numerical algorithm, validation of the
moving grid and free-surface algorithms, and demonstration of the numerical method for
the simulation of turbulent open-channel flow with finite-amplitude free-surface waves.

2. MATHEMATICAL FORMULATION

The flow of a fluid beneath a free surface is governed by the Navier–Stokes equations
subject to conservation of mass in the fluid volume along with kinematic and dynamic
boundary conditions at the free surface. This equation set is considerably more complex than
the equation set for an internal flow due to the nonlinear effects of the boundary conditions
and the temporal deformation of the domain boundary. The hyperbolic kinematic boundary
condition that governs the evolution of the free surface is nonlinear in the velocity and
spatial gradients of the surface. The dynamic boundary condition that enforces the free-
surface stress condition has a nonlinear effect from its linkage to the nonlinear momentum
equations through the surface pressure.

2.1. Navier–Stokes Equations

The spatially filtered, constant-density, incompressible Navier–Stokes equations in
Cartesian (physical) space can be presented in a non-dimensional conservation-law form in
terms of the Cartesian velocitiesui as

∂ūi

∂t
+ ∂ Āi j

∂xj
= B̄i (1)

∂ū j

∂xj
= 0, (2)
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where the overbar represents a LES filter [25]. The non-dimensional momentum flux and
source terms are

Āi j = ū j ūi + p̄δi j − Re−1 ∂ūi

∂xj
+ τi j (3)

B̄i = ∂9̄

∂xi
. (4)

All terms in Eqs. (1) through (4) are non-dimensionalized with a velocity scale(U) and a
length scale(L). The Reynolds number is defined using the kinematic viscosity(ν) such that
Re=UL/ν. The non-dimensional modified pressure(p) is defined from the dimensional
total pressure(P), density(ρ), and gravitational acceleration(g) as

p ≡ P

ρU2
+ gx3

U2
. (5)

The source term∂9/∂xi represents a body force (e.g., the driving pressure gradient in
an open-channel flow). The termτi j in the momentum flux is introduced to represent the
additional subgrid-scale terms that arise due to the filtering of the nonlinear advection terms:

τi j ≡ ui u j − ūi ū j . (6)

The subgrid-scale stress term contains both the interaction of subgrid scales with themselves
and the interaction of the subgrid scales with the resolved scales. The turbulent flow simu-
lations in this paper use the two-parameter dynamic model [18, 26], which was developed
from the dynamic-mixed model [25]. The subgrid-scale stress is modeled by

∂τi j

∂xj
= − ∂

∂xj

(
Re−1

T
∂ūi

∂xj

)
− ∂Re−1

T

∂xj

∂ū j

∂xi
+ Cr

∂L(m)i j

∂xj
. (7)

This model introduces three terms to the filtered Navier–Stokes equations: the eddy viscosity
Reynolds number ReT , the scale-similarity coefficientCr , and the modified Leonard tensor
L(m)i j . The eddy viscosity Reynolds number and scale-similarity coefficient are dynamically
modeled, while the modified Leonard tensor is directly computed from the resolved flow
field.

It is convenient to split the subgrid-scale stress so that part is contained in the momentum
flux and part is held in the source term. This requires that the momentum equations be
rewritten as

∂ūi

∂t
+ ∂ F̄ i j

∂xj
= S̄i , (8)

where

F̄ i j = ū j ūi + p̄δi j −
(
Re−1+ Re−1

T

) ∂ūi

∂xj
(9)

S̄i = ∂9̄

∂xi
+ ∂Re−1

T

∂xj

∂ū j

∂xi
− Cr

∂L(m)i j

∂xj
. (10)
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2.1.1. Curvilinear transformation of Navier–Stokes equations.Solution of numerical
problems in complicated domains using boundary-fitted curvilinear coordinates is now
a standard technique requiring little introduction. Boundary-fitted curvilinear coordinate
transformations for moving grids are derived using the chain rule for partial differential
equations, resulting in [27]

∂

∂xj
= Sq

j
∂

∂ξq
(11)

∂

∂t
= ∂

∂τ
− ẋ j S

q
j
∂

∂ξq
, (12)

whereξq with q= 1, 2, 3 are the computational space coordinates;∂/∂t is a time derivative
taken at a fixed point in physical space;∂/∂τ is a time derivative taken at a fixed point in
computational space; repeated subscript/superscript combinations imply summation; and
the surface metric tensor and grid velocity are defined as

Sq
j ≡

∂ξq

∂xj
(13)

ẋ ≡ ∂xj

∂τ
. (14)

Note that the former is only a correct tensor representation whenxj is a Cartesian coordinate
system so thatxj ≡ x j .

To simulate a flow with a free surface in boundary-fitted curvilinear coordinates, Eqs. (11)
and (12) are used to transform the physical space Navier–Stokes equations into computa-
tional space. Completing the transformation requires the metric identity [27]

∂

∂ξq

(
J−1Sq

i

) ≡ 0 (15)

along with the conservation of space [28]

∂

∂τ
(J−1)− ∂

∂ξq

(
J−1Sq

j ẋ j
) ≡ 0. (16)

Application of Eqs. (11) through (16) to Eqs. (2) and (8) through (10) provides the un-
steady, incompressible, constant-density, filtered, non-dimensional Navier–Stokes equa-
tions in time-dependent boundary-fitted curvilinear coordinates as

∂

∂τ

(
J−1ūi

)+ ∂

∂ξq

(
J−1F̄ q

i

) = S̄ i (17)

∂

∂ξq
(J−1Ūq) = 0, (18)

where the curvilinear momentum tensor̄F q
i and the curvilinear source vector̄Si are

F̄ q
i = (Ūq − Ẋq)ūi + Sq

i p̄− (Re−1+ Re−1
T

)
Gqr ∂ūi

∂ξ r
(19)

S̄ i = ∂

∂ξq

(
J−1Sq

i 9̄
)+ J−1Sq

j Sr
i

∂Re−1
T

∂ξq

∂ū j

∂ξ r
− Cr

∂

∂ξq

(
J−1Sq

j L(m)i j

)
. (20)
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All physical space variables are non-dimensional, and curvilinear-space variables are de-
fined as

inverse Jacobian J−1 = det

∣∣∣∣ ∂xi

∂ξ s

∣∣∣∣ (21)

contravariant velocity Ūq = Sq
j ū j (22)

contravariant grid velocity Ẋq = Sq
j ẋ j (23)

contravariant volume metrics Gqr = Sq
j Sr

j (24)

contravariant surface metrics Sq
i =

∂ξq

∂xi
. (25)

2.2. Kinematic Boundary Condition

2.2.1. Cartesian space.The kinematic boundary condition is the Lagrangian statement
of a material surface which requires that a particle on the surface must remain on the surface.
If F = 0 is a function that describes the location of the surface, then the kinematic condition
requires that

∂F

∂t
+ u · ∇F = 0. (26)

It is possible to use directly the Lagrangian condition(DF/Dt = 0 or Dxi /Dt = ui ) by
moving unconstrained marker particles at the free surface; however, this method is unstable
for long simulations where an explicit advance is used to integrate the free-surface position
[29]. While the instability of the Lagrangian condition can be resolved by filtering [3],
the present authors deemed it more valuable to develop an Eulerian free-surface boundary
condition that is not limited to single-valued waves. If the kinematic boundary condition,
grid generation, and Navier–Stokes equations are solved as an implicit, fully coupled set
of equations, such instability should not occur with the Lagrangian boundary condition.
Fully coupled methods have been used for laminar simulation in two space dimensions [5];
however, the complexities of the coupled approach seem to preclude its use with three space
dimensions.

A physical-space Eulerian form of the kinematic boundary condition can be obtained
through a Taylor-series expansion of the Lagrangian condition [30], resulting in

∂H

∂t
= u3− u1

∂H

∂x
− u2

∂H

∂y
, (27)

whereH is the height (in thex3 direction) of the free surface measured from some baseline in
physical space. The advantage of this approach is that it can be numerically decoupled from
the Navier–Stokes solution and grid generation without long-term instabilities arising in the
simulation [29]. Unfortunately, this boundary condition is enforced on surface particles that
are restricted to vertical motion in physical space and is therefore unsuited for overturning
waves. Our objective is the development of a simulation method that is suitable for waves
that are steep or overturning, so the physical-space Eulerian form of the kinematic boundary
condition is not useful in the present context.
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2.2.2. Curvilinear-space kinematic boundary condition.Curvilinear coordinate trans-
formations, Eqs. (11) and (12), can be applied to the physical-space Eulerian kinematic
boundary condition, Eq. (27), for use in numerical simulations with boundary-fitted curvi-
linear coordinates [22]. This approach retains the underlying vertical motion restriction on
surface particles, making the method unsuitable for waves which do not remain single-
valued. In some RANS simulations, a hybrid Cartesian/curvilinear approach has been ap-
plied [13, 14]. This approach uses curvilinear velocities for surface-tangential terms, while
the Cartesian velocity is used for the curvilinear coordinates that varies across the surface:

∂H

∂t
= u3−U1 ∂H

∂ξ1
−U2 ∂H

∂ξ2
. (28)

Application is restricted to single-valued waves and is only a consistent boundary condition
when the curvilinear coordinate that varies across the free surface is aligned with the vertical
Cartesian axis. There remains a question as to the ability of the method to handle steep
waves whereu3 is not a reasonable approximation of the surface-normal velocity. A more
general approach was used by Hino [31]; it does not have a single-valuedness restriction
in physical space, but requires deriving the Eulerian kinematic boundary condition directly
in curvilinear coordinates. However, it was applied in a fixed curvilinear system rather
than in a moving-grid system and appears to have been abandoned in the author’s later
work. The derivation of a fully curvilinear kinematic boundary condition is an extension
of the derivation for the physical-space kinematic boundary condition. A brief derivation is
presented here because it does not appear elsewhere in the literature.

To obtain directly a curvilinear Eulerian kinematic boundary condition, consider afixed
curvilinear space(ξ1, ξ2, ξ3) such that the free surface is single-valued inξ3. For the
purposes of derivation with a fixed grid, the boundary-fitted restriction (used in numerical
discretization, Section 3.1) is superfluous. DefineF as a scalar function for the free surface
such that

F(ξ, t) = ξ3−H(ξ1, ξ2, t) = 0, (29)

whereξ is a vector representing the curvilinear coordinates of a surface position at timet ,
andH is the height of the free surface measured fromξ3= 0 along a line of constantξ1

andξ2 in fixed curvilinear space. After some small time1t , the free surface has moved,
while the curvilinear coordinate system remains fixed. We require that1t is small, so the
free surface remains single-valued inξ3. A Taylor-series expansion gives

F(ξ + U1t, t +1t) = F(ξ, t)+
(
∂F

∂t
+ U · ∇F

)
1t + O(1t)2, (30)

whereU is the contravariant velocity vector of a point on the surface. It follows that

∂F

∂t
+ U · ∇F = 0. (31)

Substitution of Eq. (29) into Eq. (31) provides the curvilinear kinematic boundary condition
in fixedcurvilinear coordinates as

∂H
∂t
= U3−U1 ∂H

∂ξ1
−U2 ∂H

∂ξ2
. (32)
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This allows computation of the evolution of the free surface with reference to any fixed
curvilinear system in which the free surface is single-valued in one coordinate. As long as
the kinematic free-surface condition is valid (i.e., singularities may not exist), a series of
appropriate curvilinear systems can be defined which will be suitable for the evolution of
an overturning wave.

2.2.3. Filtered curvilinear kinematic boundary condition.Because the kinematic bound-
ary condition is inherently a nonlinear condition, the spatial filtering of the equation results
in subgrid-scale terms. The filtered kinematic boundary condition can be presented as

∂H̄
∂t
= Ū3− Ūα ∂H̄

∂ξα
+ χαα : α = 1, 2, (33)

where the subgrid-scale terms(χ) are defined as

χαα ≡Uα
∂H
∂ξα
− Ūα ∂H̄

∂ξα
. (34)

The presence of nonlinear terms in the kinematic boundary condition provides the subgrid-
scale term under either spatial or temporal filtering. The requirement for consistent averaging
of the boundary conditions has been neglected in RANS simulations of free-surface flows
in the literature and provides an additional challenge for turbulence closure schemes.

For LES closure, the velocity and surface height in the kinematic boundary condition are
decomposed into resolved and unresolved parts so that

Uα = Ūα + uα (35)

H = H̄+ h, (36)

where the overbars indicate resolved terms, and the lowercase letters represent subgrid-scale
terms (and should not be confused with Cartesian variables in this instance). It follows that

χαα ≡ (Ūα + uα)

(
∂H̄
∂ξα
+ ∂h

∂ξα

)
− (Ūα + uα)

(
∂H̄
∂ξα
+ ∂h

∂ξα

)
. (37)

Borrowing the modeling nomenclature for subgrid-scale velocities, we define the modified
“Leonard,” “cross,” and “Reynolds” terms of the filtered kinematic boundary condition as

Lαα ≡ Ūα ∂H̄
∂ξα
− ¯̄Uα ∂

¯̄H
∂ξα

(38)

Cα
α ≡ Ūα ∂h

∂ξα
+ uα

∂H̄
∂ξα
−
(

¯̄Uα ∂ h̄

∂ξα
+ ūα

∂ ¯̄H
∂ξα

)
(39)

Rαα ≡ uα
∂h

∂ξα
− ūα

∂ h̄

∂ξα
, (40)

whereα= 1, 2 and repeated subscript/superscript combinations imply summation.
For the kinematic boundary condition, the modified Leonard termLαα is made up of

resolved quantities and can be computed explicitly using a method developed for subgrid-
scale density effects in LES of stratified flows [25]. For the cross term and the Reynolds
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term, new models are required. In the development of the dynamic mixed model for density
variations, the subgrid-scale density terms were assumed to respond to the strain rates
in a fashion similar to the subgrid-scale velocity terms. This allowed the development of
a dynamic model where the subgrid-scale density variations are modeled with an eddy
diffusivity term (similar to an eddy viscosity term) and a scale-similarity term. Both effects
are assumed to be proportional to the magnitude of the resolved strain rate and are computed
dynamically on the basis of a test-filter scheme and least-squares fit [25]. However, the free
surface will not support a shear stress, and the basis of a kinematic boundary condition
model solely on the irrotational strain rates may be questionable (especially in the near-
surface region, where viscosity may be important). One can certainly make a scale-similarity
argument that the cross terms should be proportional to the Leonard term, but there is an
open question as to the appropriate constant of proportionality. Certainly when dealing with
the small-scale kinematics of the free surface it would be wise to consider the dynamics
of the flow and the dynamic boundary condition. For the small scales of motion near the
surface, the effects of pressure, viscosity, and capillarity in the dynamic boundary condition
may all be of similar orders of magnitude and are more likely to drive the kinematics of the
subgrid-scale flow than is the resolved velocity field.

A simple approach suitable for initial investigations into LES modeling of the kinematic
boundary condition is to compute directly the modified Leonard term using a test-filter
scheme [25]. If the cross terms and Reynolds terms are neglected the kinematic boundary
condition can be written as

∂H̄
∂t
= Ū3− Ū1 ∂H̄

∂ξ1
− Ū2 ∂H̄

∂ξ2
+ L1(Ū

1
, H̄)+ L2(Ū

2
, H̄), (41)

whereL is defined as a Leonard stress operator

Lα(Ūα, H̄) = Ūα ∂H̄
∂ξα
− ¯̄Uα ∂

¯̄H
∂ξα

, (42)

which can be computed from grid-scale-resolved quantities.
The development, implementation, and testing of subgrid-scale models (such as that

proposed above) is not the focus of this paper and remains an area of ongoing research. If
we non-dimensionalize the kinematic boundary condition by the same length and velocity
scales used in the Navier–Stokes equations, and neglect the subgrid-scale terms, the filtered,
non-dimensional kinematic boundary is

∂H̄
∂t
= Ū3− Ū1 ∂H̄

∂ξ1
− Ū2 ∂H̄

∂ξ2
. (43)

The development and testing of subgrid-scale models requires well-resolved DNS exper-
iments of nonlinear free-surface flows to provide a sound basis for examining the physics
near the surface. Such DNS simulations do not yet exist. Laboratory experiments could
provide a basis for some testing of LES models at the free surface, but have two major
drawbacks: (1) the laboratory data collection techniques need to be extended to three di-
mensions to obtain sufficient data to validate the three-dimensional terms in the LES models,
and (2) the laboratory experiments necessarily have surface-tension effects which compli-
cate model development and validation [32]. For simplicity, it is preferable to first develop
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a model without surface-tension effects that is directly comparable to a DNS simulation
that neglects surface tension.

2.3. Dynamic Boundary Condition

The dynamic boundary condition is generally obtained by assuming that (1) a free surface
will only support the normal stress of a constant surface tension and (2) tangential stresses
must disappear. The result is the dynamic boundary condition for an incompressible fluid
in its classic form,

Ps+ − Ps− = −2µei j ni n j + γ
(
R−1

1 + R−1
2

)
(44)

ei j ti n j = 0, (45)

whereP is the total pressure, the subscriptss+ ands− indicate the pressure on the upper
and lower sides of the free surface,ni andti are the unit normal and tangent vectors,γ is
the surface tension coefficient,R1 andR2 are the principal radii of curvature of the surface,
µ is the dynamic viscosity, andei j is the rate-of-strain tensor defined as

ei j ≡ 1

2

(
∂ui

∂xj
+ ∂u j

∂xi

)
. (46)

For most purposes, this form of the dynamic boundary condition is adequate and is often
approximated as simplyP= 0. Equations (44) and (45) do not provide for straightforward
implementation in a boundary-fitted curvilinear coordinate numerical method; therefore,
our approach will begin with the tensor form of the dynamic boundary condition in general
curvilinear coordinates [33]. By applying the assumptions used to get Eqs. (44) and (45)
along with the requirement that the curvilinear coordinate system be boundary orthogonal,
thedimensionaldynamic boundary condition can be presented as

(Ps+ − Ps−) = −2µU3
,3+ 2Mγ (47)

U1
,3 = −G33

{
G11U3

,1+ G12U3
,2

}
(48)

U2
,3 = −G33

{
G22U3

,2+ G12U3
,1

}
, (49)

whereG33 is the covariant metric

G33 = ∂xj

∂ξ3

∂xj

∂ξ3
(50)

andM is the mean curvature, defined for aξ3 surface in a boundary-orthogonal coordinate
system as

M = 1

2

Gαβ

G33

(
S3

j

∂2xj

∂ξα ∂ξβ

)
, (51)

with α andβ summed over (1, 2) andj summed over (1, 2, 3). The curvilinear set of
equations is considerably simplified through the assumption of boundary orthogonality. If
this assumption is not applied, terms withG13 andG23 metric coefficients will occur in the
dynamic boundary condition.
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If we let the (dimensional) outside pressure (Ps+) equal zero and apply Eq. (5) for the
non-dimensional reduced pressure and non-dimensionalize all other terms by the length
scaleL and the velocity scaleU , the normal component of the dynamic boundary condition
can be written as

ps− = zs−
(Fr)2

+ 2

Re
U3
,3−

2

We
M, (52)

wherezs− is the (non-dimensional) value of the vertical Cartesian coordinate(x3) at the
surface and definitions for the Froude and Weber numbers are

Fr ≡ U√
gL (53)

We≡ ρU2L
γ

. (54)

Note that the differentiation in Eqs. (47) through (52) is covariant tensor differentiation
and requires the application of Christoffel symbols for deriving a discrete implementation.
Applying some algebra and tensor manipulation, we reduce the dynamic boundary condition
of Eqs. (48), (49), and (52) to a form that can be more readily implemented in a numerical
method. For the present second-order method, metrics can be assumed to pass through the
filter operation [34] so the full dynamic boundary condition can be written as

p̄s− =
z̄s−
(Fr)2

− 2M

We
+ 1

Re

{
2
∂Ū3

∂ξ3
+ G33

[
Ū1 ∂

∂ξ1
(G33)+ Ū2 ∂

∂ξ2
(G33)

]}
(55)

∂Ū1

∂ξ3
= −G33

{
G11∂Ū

3

∂ξ1
+ G12∂Ū

3

∂ξ2

}
− Ū3

{
G11∂G13

∂ξ3
+ G12∂G23

∂ξ3

}
(56)

∂Ū2

∂ξ3
= −G33

{
G22∂Ū

3

∂ξ2
+ G12∂Ū

3

∂ξ1

}
− Ū3

{
G22∂G23

∂ξ3
+ G12∂G13

∂ξ3

}
. (57)

If our grid is sufficiently fine and the surface is sufficiently smooth, then the tangential and
normal derivatives of the metrics can be neglected in the above equation set. However, if
the free surface has steep surface oscillations on the order of the grid scale or slightly larger,
then the metric gradient terms cannot be neglecteda priori.

3. NUMERICAL METHOD

The numerical simulation method is a time integration of Eqs. (17) through (20) subject
to the free-surface boundary conditions, Eqs. (43), (55), (56), (57), and the subgrid-scale
closure model, Eq. (7). The approach uses a finite-volume, fractional-step, pressure-Poisson
integration of the unsteady Navier–Stokes equations with curvilinear grid generation using
a Poisson equation method.

3.1. Free-Surface Advance

The first step of the numerical method is to advance the free-surface position from time
(n) to time(n+ 1). The method used is an uncoupled-grid approach where the kinematic
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boundary condition is integrated forward in time without implicit reference to the time
(n+ 1) velocities. This requires that at time(n) there is a fixed curvilinear grid that is
boundary-fitted in theξ3 coordinate. All three components of the contravariant velocity
must be known at each grid point on the free surface. To find the change in theξ3 coordinates
of the free surface at some small time later with reference to the same fixed curvilinear grid
(see Eq. (58) ff.), a Runge–Kutta fourth-order (RK4) method is applied with a fifth-order
upwind discretization for spatial derivatives [12]. After computing the free-surface advance
in curvilinear space, the new curvilinear coordinates are converted back to physical space
coordinates for use in calculating the new computational mesh for the(n+ 1) time step.
With this approach, the coordinates have a tendency to drift in the streamwise direction
unless restrained or redistributed. Rather than an artificial restraint being used, the grid
points are allowed to move in accordance with the kinematic boundary condition, then
redistributed on the free surface using a two-dimensional cubic spline. This maintains a
smooth and even distribution of points on the surface in physical space.

The advantage of our free-surface method is that the kinematic boundary condition is
enforced upon points which move along lines of constantξ1 andξ2 curvilinear coordinates
rather than lines of constantx andy physical coordinates. Thus, the free surface motion is
computed along lines that are locally orthogonal to the timen grid rather than at an angle that
depends upon the steepness of the wave. As a result, the Eulerian formulation requirement
of a single-valued grid in physical space is replaced by a single-valuedness requirement in
curvilinear space. This is a less restrictive condition for a boundary-fitted coordinate system,
requiring only that the slope of the free surface be continuous. A discontinuous surface slope
implies wave breaking and a violation of the material condition of the free surface, so it can
be said that the curvilinear form is generally valid and can be implemented numerically as
long as the kinematic boundary condition itself is valid. The movement of the points along
surface normal lines provides a simpler implementation than the curvilinear transformations
of the physical space kinematic boundary condition used in the literature [22, 35].

The ability of present method to simulate near-breaking and overturning waves is primar-
ily a matter of the availability of computational power. The number of grid points required for
accurate simulation of a wave shape increases as a wave steepens and overturns. Increasing
the number of grid points along the surface affects the time step required to avoid numerical
instabilities at the surface. The study of near-breaking phenomena and demonstration of the
numerical method for this type of problem remain subjects for future research.

To advance the free surface from time(n) to time (n+ 1), we consider the time(n)
curvilinear grid to befixedwith respect to time and require that it be boundary-fitted to the
time (n) free surface. Thus, at the surface,

H[n] = ξ3[n] ∣∣
surface= constant. (58)

The gradients of the time(n) free-surface height relative to theξ1 and ξ2 curvilinear
coordinates will disappear, since

δH
δξq

[n]

= δξ3

δξq

[n]

= 0: q = 1, 2. (59)

The resulting RK4 discrete system for the kinematic boundary condition is

k = 1tU3 (60)
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k̄ = 1t

{
U3− U1

2

δk

δξ1
− U2

2

δk

δξ2

}
(61)

k̃ = 1t

{
U3− U1

2

δk̄

δξ1
− U2

2

δk̄

δξ2

}
(62)

k̂ = 1t

{
U3−U1 δk̃

δξ1
−U2 δk̃

δξ2

}
(63)

Hn+1 = Hn + 1

6
(k+ 2k̄+ 2k̃+ k̂), (64)

where a spatial derivative at locationi is discretized as(
U
δk

δξ

)
i

= Ui

60
{ki+3− 9ki+2+ 45(ki+1− ki−1)+ 9ki−2− ki−3}

+ |Ui |
60
{ki+3− 6ki+2+ 15ki+1− 20ki + 15ki−1− 6ki−2+ ki−3}. (65)

To obtain the time(n+ 1) physical space position of a particle on the surface after
numerical solution of Eqs. (60) through (64), we note that

1xi = 1ξ3 δxi

∂ξ3
: i = 1, 3, (66)

which can be discretized as

xn+1
i = xn

i + (Hn+1−Hn)

(
δxi

δξ3

)n

. (67)

This system provides a method for explicitly updating the physical-space free-surface po-
sition from time(n) to (n+ 1).

3.2. Grid Generation

The numerical method requires the computation of a new curvilinear grid at each time
step. To accurately resolve the near-surface boundary layer under steep or overturning waves
requires a grid-generation method that (1) generates boundary-orthogonal grids, (2) mini-
mizes grid skewness, (3) allows control of grid stretching. (4) is computationally efficient
in vector or parallel implementation, (5) uses a modest amount of computer memory, (6)
does not require disk access during computation, and (7) does not require user input during
the grid solution process. Grid generation is a sophisticated discipline with a variety of
available solution techniques that satisfy the above criteria to some extent [36]. For our
purposes, the most suitable technique is the Poisson grid generation method [27] using
the 3DGRAPE/AL code [24]. This uses standard techniques of iterative control function
adjustment to obtain a boundary-orthogonal grid and user-specified grid distributions.

3.3. Navier–Stokes Solution

Our numerical approach to solving the Navier–Stokes equations follows the method de-
veloped by Zanget al. [16] that descends from the methods of Kim and Moin [37] and
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Harlow and Welch [1]. To discretize the momentum equation we apply the explicit second-
order Adams–Bashforth (AB2) algorithm to the convective terms and the off-diagonal
viscous terms, with the implicit Crank–Nicolson second-order (CN2) scheme for the di-
agonal viscous terms. The use of a moving grid requires a convective grid-flux term to
account for the convective motion of the grid. This term is discretized with a second-order
approximation using the volume flux of the grid between the time(n) and(n+ 1) physical
space positions for each cell face and the time(n) velocity. The pressure is removed from
the momentum equation in the predictor stage of the fractional-step method and a numer-
ical pressure variable(φ) is defined and computed in the solution of a Poisson equation.
Second-order-accurate approximate factorization is used on the left-hand side of the dis-
cretized momentum equation for increased computational efficiency. For clarity, we drop
the overbar notation for filtered variables in discrete equations and useδ instead of∂ to
indicate discrete derivatives; the resulting system can be presented as

1. predictor step:(
I − Dn+1

1

)(
I − Dn+1

2

)(
I − Dn+1

3

)(
u∗i − un

i

) = Si ; (68)

2. pressure-Poisson equation:

δ

δξq

(
J−1Gqr δφ

δξ r

)n+1

= 1

1t

δ

δξq
(J−1U ∗q); (69)

3. corrector steps:
(a) for the Cartesian velocity (on cell centers):

un+1
i = u∗i +

[
1t

J−1
Bi (φ)

]n+1

; (70)

(b) for the normal component of contravariant velocity (on cell faces):

(J−1Uq)n+1 = J−1U ∗q −1t

(
J−1Gqr δφ

δξ r

)n+1

. (71)

The pressure variable(φ) is related to the reduced pressure(p) by

Bi (p) =
[

J−1− 1t

2
DI

]
Bi (φ)

J−1
(72)

and the source term of the predictor (Eq. [68]) is

Si = 1t

(J−1)n+1

{
3

2

(
Cn

i + Dn
E

[
un

i

])− 1

2

(
Cn−1

i + Dn−1
E

[
un−1

i

])
+ 1

2

(
Dn

I

[
un

i

]+ Dn+1
I

[
un

i

])+ Qi

}
+
{
(J−1)n

(J−1)n+1
− 1

}
un

i . (73)

The use of time(n+ 1) metric terms in the source of the predictor, Eq. (73), is allowable
as our numerical method integrates the kinematic boundary condition for the time(n+ 1)
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free-surface position and computes the curvilinear grid prior to the solution of the predictor
step. The last term in Eq. (73) is applied so that the velocityun

i on the left-hand side of the
predictor, Eq. (68), is multiplied by the time(n+ 1) inverse Jacobian during the derivation of
the discrete equations. This prevents the appearance of the time(n) Jacobian in the corrector
step and the pressure-Poisson equation, and provides for a simpler implementation.

Discrete operators from Eq. (68) through (73) are defined as

Dα( ) = 1t

2J−1

δ

δξα

{
ν J−1Gαα δ

δξα
( )

}
, (74)

whereα= 1, 2, 3 with no summation:

DE( ) = δ

δξq

{
ν J−1Gqr δ

δξ r
( )

}
q 6=r

(75)

DI ( ) = δ

δξq

{
ν J−1Gqr δ

δξ r
( )

}
q=r

(76)

Ci = − δ

δξq

{
J−1Uqui

}
(77)

Bi ( ) = − δ

δξq

{
J−1Sq

i ( )
}

(78)

Qi = δ

δξq

{
(J−1Ẋq)n+1/2un

i

}
. (79)

In the operatorQi , we compute(J−1Ẋq)n+1/2 as the volume swept out by theq side of a
cell as the grid moves from the time (n) to the time (n+ 1) positions.

The conservation of space, Eq. (16) can be written in a discrete form as

(J−1)n+1 = (J−1)n+1+ δ

δξq
(J−1Ẋq)n+1/2. (80)

The conservation of space must be used to compute the new inverse Jacobian at each time
step [28]. To prevent numerical inconsistency, the termJ−1Ẋq must be numerically identical
in both the implementation of the conservation of space, Eq. (80), and in the discrete grid
motion termQi , in Eq. (79).

3.4. Dynamic Boundary Conditions at the Free Surface

3.4.1. Tangential components.The tangential components of the dynamic boundary
condition are used to obtain the tangential velocities on (1) the free surface (for use in
integrating the kinematic boundary condition), and (2) the numerical ghost points outside
the free surface (for use in the boundary conditions on the predictor step of the solution
method). We experimented with linear, quadratic, and cubic implementations of the bound-
ary conditions and found the simple linear approach worked best when the boundary layer
was well resolved. The linear approach can be presented as

Uα
surf = Uα

surf−1/2+
1

2

δUα

δξ3

∣∣∣∣
surf

: α = 1, 2, (81)
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where the subscript notation (surf) indicates the value at the free surface and the notation
(surf− 1/2) indicates the value at the center of a cell face for the first cell inside the surface.
The gradient ofUα across the boundary is found from a discrete implementation (using
central differences) of the tangential dynamic boundary condition, Eqs. (56) and (57). The
U3 component at the center of the cell face on the free surface is computed directly in
the corrector step, Eq. (71), from the computed pressure field and theU ∗3 value at the sur-
face.

Computation of contravariant velocities on the faces and centers of the ghost cells outside
the free surface is accomplished in a similar fashion. Once the contravariant velocities are
computed, the three components of the Cartesian velocity must be calculated at the centers of
the ghost cells outside the free surface. These values provide part of the boundary condition
for the u∗ estimated velocity computation [37]. The Cartesian velocities for each ghost
point are obtained by inverting a 3× 3 matrix, Eq. (22), which relates the curvilinear and
Cartesian velocities.

3.4.2. Normal component.The normal component of the dynamic boundary condition,
Eq. (55), is discretized using central difference operators. This provides a Dirichlet con-
dition on the modified physical pressure (p). A subtle point that is overlooked in some of
the literature is that the numerical pressure variable (φ) is an approximation of the phys-
ical pressure that may not be of the same order of accuracy as the solution method. The
relationship between the numerical and physical pressure variables is a function of the dis-
cretization method, and is given by Eq. (72) for the present approach. In general, it is not
mathematically rigorous to simply substituteφ for p in the dynamic boundary condition
(or any other pressure computation). However, our experience has been that it is in keep-
ing with the order of accuracy of the simulation method for the flows investigated. In test
simulations we computed the difference between the right-hand and left-hand sides of the
p/φ relation, Eq. (72), with the result that the difference was always of the order1t2 or
smaller. This conclusion was also reached by R. Calhoun (Personal communication, 1996),
who conducted a more detailed analysis by numerically integrating thep/φ relation in a
simulation of flow over a wavy boundary with turbulent separation.

The normal component of the dynamic boundary condition is used as a Dirichlet boundary
condition on the pressure in the solution of the Poisson pressure equation. To be numeri-
cally consistent in the discretization, all the terms in the normal component of the dynamic
boundary condition, Eq. (55), should be time(n+ 1) values. However, unlike a no-slip
boundary, the velocity on the free surface at time(n+ 1) is not knowna priori. A pre-
cise discretization would involve substituting the contravariant corrector step, Eq. (71),
into the dynamic boundary condition to change theUn+1 values intoU ∗ values plusφn+1

gradients. This boundary condition includes bothφ and second derivatives ofφ, changing
the form of the boundary condition and making implementation significantly more compli-
cated (especially for use with a multigrid solver).

Two approaches can be used to obtain second-order accurate discretizations of the dy-
namic boundary condition, Eq. (55), in terms of time(n) variables while retaining a simple
Dirichlet pressure boundary form. The contravariant corrector step, Eq. (71), and a Taylor
series expansion for the pressure can be used to write

(Uq)n+1 = U ∗q −1t

(
Gqr

J−1

δφ

δξ r

)n

+ O(1t)2. (82)
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Substituting Eq. (82) into a discretization of Eq. (55) provides a Dirichlet boundary condition
on the pressure in terms of theU ∗ velocities and second derivatives of the time(n) pressure
variable. This has the disadvantage of feeding numerical errors in the time(n) pressure
computation back into the computation of the time(n+ 1) pressure boundary condition.
Such feedback can induce undesirable numerical oscillations in the pressure field.

The approach used in the present work does not have feeeback of the time(n) pressures
into the boundary condition. This requires a Taylor-series expansion for each velocity term
on the right-hand side of Eq. (55), so that the resulting dynamic boundary condition is

φn+1
S− =

zs−
(Fr)2

+ 2M [n+1]γ

+ 1

Re

{
2
δU3

δξ3

[n]

+ G33

J−1

[
U1 δ

δξ1

(
J−1G33

)+U2 δ

δξ2

(
J−1G33

)][n]
}

+ 1t

Re

{
2
δ

δξ3

(
U3 [n] −U3 [n−1]

)+ G33

J−1

(
U1 [n] −U1 [n−1]

) δ
δξ1

(
J−1G33

)[n]

+ G33

J−1

(
U2 [n] −U2 [n−1]

) δ
δξ2

(
J−1G33

)[n]
}
+ O(1t)2. (83)

In our simulations, 1/Re≤O(1t); so without loss of accuracy, we can neglect terms of
order(1t/Re) in our second-order method. This is an improvement over theP= 0 boundary
condition (used in many free-surface simulations) that generally isO(1/Re) or O(1t)
accurate. Using our approach, the discrete, surface-normal, dynamic boundary condition
becomes

φn+1
S− =

zs−
(Fr)2

+ 2M [n+1]γ

+ 1

Re

{
2
δU3

δξ3

[n]

+ G33

J−1

[
U1 δ

δξ1

(
J−1G33

)+U2 δ

δξ2

(
J−1G33

)][n]
}
. (84)

Implementation of the Dirichlet pressure boundary condition in the multigrid solver is ac-
complished using a linear approach that is consistent with the linear prolongation/restriction
operators of the multigrid method [17]. The velocities on boundaries other than the free sur-
face are knowna priori so pressure boundary conditions are only required when a grid is not
boundary-orthogonal. To implement the pressure boundary condition on the free surface,
we first obtain the estimated contravariant velocity normal to the free surface(U ∗3) using
linear interpolation from interior and ghost pointu∗i velocities and the computed boundary
metrics. This provides theU ∗ on the boundary needed for the pressure-Poisson equation
source term (see Eq. [69]). The primary difficulty in implementing the pressure boundary
condition is that the boundary condition is defined on the edges of computational cells while
the pressures in the interior are defined at the centers of computational cells. Our implemen-
tation computes the ghost point pressure using linear extrapolation from the center of the
first cell inside the boundary and the boundary pressure. The ghost point pressure appears
in the discrete stencil for the left-hand-side of the pressure-Poisson equation (69) and thus
provides for efficient implementation in the multigrid solver.
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3.5. Summary of the Numerical Method

1. Use RK4 and fifth-order upwind discretization of the kinematic boundary condition,
Eqs. (60) through (67), to advance the free surface from time(n) to time(n+ 1).

2. Compute a boundary-orthogonal grid and metrics for time(n+ 1) grid using the
Poisson equation method.

3. Use conservation of space to compute new Jacobians of grid cells.
4. Solve foru∗i at center of cells using AB2 with quadratic upwind interpolation

[38] discretization for convective terms, CN2 for diagonal viscous terms, and approxi-
mate factorization for the implicit solution. This applies a vectorized tridiagonal solver to
Eq. (68).

5. Use linear interpolation to obtain the normal component ofU ∗ on each cell face.
6. Solve the Poisson pressure equation for the pressure variableφ using a 3D vectorized

multigrid solver [16]. The normal component of the dynamic boundary condition is used to
provide a Dirichlet pressure boundary condition on the free surface. A pressure boundary
on the bottom (Dirichlet boundary) is not required since the grid is boundary orthogonal.
As demonstrated by Zanget al.[16], under this condition only a zero contravariant velocity
normal to the boundary is required to make the Poisson equation for the pressure well
posed.

7. Using the Cartesian corrector step, Eq. (70), compute the time(n+ 1) Cartesian
velocity (ui ) at cell centers.

8. Using the contravariant corrector step, Eq. (71), compute the time(n+ 1) con-
travariant velocity components normal to cell surfaces,Uq.

9. Using the tangential components of the dynamic boundary condition, Eqs. (56) and
(57) along with Eq. (81), compute the tangential components of contravariant velocityUq

on free surface and ghost points. This provides the velocities needed to advance the free
surface in the next time step. Transform the contravariant velocities into Cartesian velocities
for use in theu∗ boundary condition in the next time step.

4. NUMERICAL EXPERIMENTS FOR CODE VALIDATION

4.1. Decaying Vortex with a Moving Grid

The use of second-order-accurate discretizations does not guarantee second-order ac-
curacy in a numerical simulation. This is especially true with boundary-fitted curvilinear
coordinates and moving grids. Because of the complexity of computational code required
for a curvilinear, moving-grid simulation of the Navier–Stokes equations, there is always a
chance of error either in derivation of the transformation or in implementation of the dis-
cretized forms. The fractional-step method used in this work was demonstrated to provide
second-order spatial accuracy for Cartesian grids in the work of Kim and Moin [37] through
grid-refinement tests of a decaying vortex. The decaying vortex is an analytical solution of
the two-dimensional Navier–Stokes equations over the domain of(0≤ x1, x2≤π) that can
be written as

u1 = −cos(x1) sin(x2) e−2t (85)

u2 = sin(x1) cos(x2) e−2t (86)

p = −0.25{cos(2x1)+ cos(2x2)} e−4t . (87)
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FIG. 1. Decaying vortex accuracy: (—◦—) fixed grid; (· · × · ·) translating grid; (-∗ -) stretching grid.

In Zanget al. [16] the curvilinear coordinate adaptation of Kim and Moin’s fractional-step
method was shown to provide second-order spatial accuracy using the same set of tests. To
provide continuity with the previous works, we have conducted similar tests to demonstrate
that the moving-grid algorithm and its implementation in the code result in second-order
spatial accuracy for both fixed and moving grids.

Figure 1 provides simulation results showing the reduction of the RMS velocity error
caused by increasing the number of grid points. The time step is reduced as the grid is
refined to maintain a constant maximum CFL condition. Three different error lines are
shown. The first error line represents the results for a fixed grid, the second is for a grid
that is fixed in shape but translates through the decaying vortex domain, and the third is for
a grid that has boundaries which remain fixed but whose interior grid lines are stretched
with each time step. It can be seen that accuracy is approximately second-order in all these
cases.

4.2. Monochromatic Standing Waves

Unfortunately, there does not appear to be a simple analytical solution of the Navier–
Stokes equations with a free surface that could be used to compute the accuracy of the
implementation of the full free-surface algorithm. However, there exist approximate solu-
tions for laminar, monochromatic standing waves in an irrotational flow field that can be
used to validate the kinematics of the free surface. The rotational effects due to the free
surface motion are small and confined to a thin free-surface boundary layer; thus, we should
be able obtain a viscous solution of the Navier–Stokes equations that results in the wave
form attributable to the irrotational flow field. As a check on the dynamics of the free-surface
solution, the viscous damping of the wave caused by the free-surface boundary layer can
be approximated (to the first order) from energy arguments [39].

We performed simulations of standing waves in a two-dimensional rectangular basin
with free-ship boundary conditions on the sides and bottom of a 32× 32 cell domain. The
domain length and still-water depth were one-half the wavelength of the primary standing
wave. The initial wave slope(ε) in the simulation is defined from the wave amplitude(a)
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and the wave number(k) as

ε ≡ ak. (88)

Simulations were conducted for small-amplitude waves withε= 0.03 and finite-amplitude
waves withε= 0.3. A standing wave begins to break [40] atε= 0.32, so the latter test
is a severe test of the ability of the free-surface algorithm to correctly maintain proper
kinematics. Simulations were conducted with wave Reynolds numbers ranging from 50 to
5000. The wave Reynolds number is defined as

Rew = σ/νk2, (89)

whereσ is the radian frequency. The wave Froude number

Frw = σ/
√

gk= tanhkD, (90)

whereD is the depth, was fixed at unity (i.e., deep-water waves). Uniform grid distributions
were used in the horizontal and vertical directions to allow the largest possible time step. For
the finite-amplitude wave, simulations up to Rew = 500 were conducted with the uniform
grid. This was the largest Reynolds number possible while maintaining five uniformly
distributed grid cells in the free-surface boundary layer. Simulations were successfully
conducted at higher Reynolds numbers using grid stretching to obtain resolution of the
boundary layer. However, the stretched grid tests are not necessarily good indicators of
the system performance since the fine grid resolution requires a small time step, allowing
accurate results to be obtained without adequately testing the robustness of the method.

According to linear theory for small amplitude waves, the wave shape should be a sinu-
soid, where the surface height(η) above the still-water level is

η(x, t) = a sin(kx) sin(σ t). (91)

Nonlinear, second-order theory for finite-amplitude standing waves predicts a wave shape
given by [40]

η(x, t) = a sin(kx) sin(σ t)− 1

2
aε coth(kD) cos(2kx)

×
{

sin2(σ t)− 3 cos(2σ t)+ tanh2(kD)

4 sinh2(kD)

}
. (92)

A comparison of the free-surface wave shape against linear and nonlinear theory for a
finite-amplitude standing wave with anε of 0.3 at a Reynolds number of 500 is shown in
Fig. 2. It can be seen that the agreement of the surface shape with nonlinear theory is quite
good. This correspondence was achieved regardless of whether the initial wave shape of
the simulation was based on linear or nonlinear theory.

The damping of a free wave due to viscosity as a function of time can be approximated
from [39]

a(t) = a(0) e−2νk2t . (93)

This is based upon an energy dissipation argument for linear waves in deep water, so we
can only expect this to provide a rough guide to damping since the simulation waves are
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FIG. 2. Free-surface wave shape:η is surface displacement,λ is wavelength,x is domain length;(◦)simulation;
(—) nonlinear theory; (- - -) linear theory.

nonlinear and at intermediate depth. For a waveε of 0.3 at a Reynolds number of 50, Fig. 3
shows the evolution of the wave wall height over time. The wave damping is in reasonable
agreement with the theory. A comprehensive review of the results of monochromatic wave
simulations are found in Hodgeset al. [41] and Hodges [42]. Validation of the numerical
method for 3D standing waves can also be found in Hodges and Street [43].

5. SIMULATION OF FINITE-AMPLITUDE WAVES ON 3D TURBULENT

CHANNEL FLOW—AN APPLICATION OF THE METHOD

As an application, we chose to examine the interaction of nonlinear surface waves and
a turbulent current. The simplest means of generating and maintaining a turbulent current
in a numerical simulation is to drive the flow with a mean pressure gradient and apply a
Dirichlet bottom boundary condition. The flow domain for these simulations is a rectangular
three-dimensional channel with a wavy free surface on the upper boundary. The turbulent
open-channel flow is driven by a constant body force over the length of the domain, computed
from the relation

d9

dx1
= −u2

τ

D
, (94)

FIG. 3. Free surface wall height:η is surface displacement,λ is wavelength,t is simulation time,T is
theoretical wave period;(◦) simulation; (—) nonlinear theory; (- - -) linear theory.
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whereuτ is the shear velocity (or friction velocity) at the bottom boundary,D is the depth
of the domain, andd9/dx1 is the body force from Eq. (4). The boundary conditions on
the flow are (1) periodic in the streamwise and spanwise directions, (2) Dirichlet on the
bottom boundary, and (3) the nonlinear kinematic and dynamic boundary conditions on the
free surface. The dimensions of the domain are 2π ×π × 1 when non-dimensionalized by
the channel depth. Initial conditions for the simulations were developed from DNS data
of an open-channel flow with a rigid free-slip lid [44] and the velocity field for a Stokes
second-order progressive wave.

5.1. Simulation Setup

These simulations use a wave-following reference frame so that grid motion is limited to
perturbation of the wave shape rather than advective motion of the wave. This allows a larger
time step than a fixed frame of reference without violating the CFL condition on explicit
motion of the free surface [42]. In a wave-following frame, the wave celerity is not known
a priori, so the wave celerity is computed from the wave crest motion during enforcement
of the kinematic boundary condition. The wave celerity is applied as a Dirichlet velocity
boundary condition on the bottom boundary, in a direction opposite to wave propagation.
There is an adjustment period at the start of the simulation during which the computed wave
celerity oscillates. Under these conditions the reference frame is not inertial, so results in
this period cannot be considered valid. However, within three to five wave periods, the
computed celerity is constant and the reference frame is inertial.

The use of periodic boundary conditions in the streamwise directions simplifies the
computations by eliminating requirements for inflow/outflow boundary conditions, which
would otherwise require multiple wavelengths of the surface wave to obtain a reasonable
simulation. To ensure the suitability of periodic boundary conditions for the turbulent flow,
the dimensions of the simulation domain and friction velocity Reynolds number (Reτ )
were identical to those previously used in DNS simulations of a turbulent channel flow with
periodic streamwise boundary conditions [44] and LES of turbulent decay in a channel [18].
The present code is based on the LES code used in Salvettiet al.[18], which quite accurately
reproduced the DNS results to which it was compared. The results of these previous works
show that the temporal evolution of the turbulent flow field in this domain can be adequately
captured with periodic boundary conditions. Our objective was to examine the interactions
between the velocity field generated by surface wave and turbulence for the case where the
wavelength is longer than the turbulent length scale. Wave–wave interactions over longer
length scales than the wavelength are removed from consideration by limiting the domain to
a single wavelength of a Stokes wave. Streamwise periodic boundary conditions in a wave-
following reference frame correspond to following the temporal evolution of one wave from
an infinite train of periodically identical surface waves. Since the boundary conditions are
exactly periodic, the surface wave does not have the spatial decay seen in mechanically
generated waves in a laboratory flume, but can be considered a model of regular surface
swell at a long distance from the region of generation.

Three types of open-channel simulations have been conducted: (1) a flow that begins
with a flat free surface and a turbulent current (the “current-only” simulation), (2) a laminar
progressive wave without an imposed streamwise current (the “wave-only” simulation),
and (3) a flow that begins with a finite-amplitude progressive wave superposed over a tur-
bulent current (the “wave/current” simulation). The current-only simulation was run until a



SIMULATION OF TURBULENT FREE-SURFACE FLOWS 447

FIG. 4. Initial computational domain for turbulent channel flow.

statistically steady state was reached to obtain a baseline turbulent velocity field. This was
used as part of the initial conditions in simulations with a turbulent current. The wave-only
initial conditions are the two-dimensional irrotational velocity field of a Stokes wave pro-
jected across the three-dimensional domain. The wave/current initial conditions superpose
the irrotational velocity field and surface deformation of a Stokes wave onto the turbulent
velocity field and surface deformation of the current-only open-channel simulation. The
system is then allowed to evolve in accordance with the solution of the Navier–Stokes
equations and the boundary conditions.

The simulation domain was discretized with 32× 32× 64 grid cells, as shown in Fig. 4.
The simulations were conducted at Reτ = 171, which Pan and Banerjee [44] demonstrated
could be resolved to DNS accuracy with 643 grid cells using a pseudo-spectral method.
Salvettiet al. [18] further demonstrated that the fundamental characteristics of decaying
turbulence in the DNS simulation of Pan and Banerjee could be captured with the present
numerical method and LES model with a 323 grid. With a different second-order finite-
difference method, Komoriet al. [12] demonstrated good results in a DNS simulation at
Reτ = 160 using 60× 60× 40 grid cells. Given the experience in the literature, the present
work provides reasonable resolution for LES of turbulence in the open-channel flow. The
primary effect of coarser-than-DNS resolution for the present simulations appears to be an
increase in the spanwise spacing of slow speed streaks in the lower boundary layer. The slow-
speed streaks have been observed to be spaced at approximately 100z+ units in laboratory
experiments and well-resolved DNS simulations [45], while the present simulations obtain
streak spacing of 170z+ units (similar to previous simulation results at coarser resolution
[45]).

This setup allows analysis of the wave–turbulence interaction that has heretofore not been
presented in the literature. Figure 5 shows spanwise/vertical planes of instantaneous data
from current-only and wave–current simulations. The vectors arex2 velocity and thex3

velocity fluctuation, while the color scale represents the streamwisex1 velocity fluctuation.
The black areas represent fluid that is slow relative to a spanwise average, and the white
areas represent flow that is fast relative to a spanwise average. In these figures the classic
“mushroom cap” shape of the hairpin vortices is readily apparent. Of particular interest in
Fig. 5 is the difference in the velocity vectors near the surface. In the current-only flow, as
the vortex core approaches the free surface, the fluid is accelerated through the effective
“nozzle” created between the vortex core and the free surface. In contrast, for the wave–
current flow, the vortex core appears to be interacting with the surface in the formation of
three-dimensional short-crested waves (Section 5.2).

The primary difficulty of conducting turbulent free-surface numerical simulations is
obtaining sufficient grid resolution in the free-surface boundary layer. The length scale
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FIG. 5. Instantaneous velocity fluctuations (normalized byuτ ) on spanwise, vertical plane beneath wave crest
(color scale shows streamwise component; arrows are vertical and spanwise components).

(β−1) of this layer can be approximated as [39]

β−1 =
√

2ν/σ . (95)

For gravity waves on water, this value is usuallyO (0.1) mm. For accurate numerical sim-
ulation of near-surface viscous effects there should be on the order of five grid cells within
the boundary layer. Note that if this minimum resolution is not attained, then the free-
surface dynamic boundary condition should be modeled rather than enforced. The present
simulations have at least 10 grid cells within the free-surface boundary layer to ensure the
near-surface physics are correctly represented.

Another test of the performance of the simulation in the near-surface region is its ability to
produce the correct vorticity generation in the free-surface boundary layer. Longuet-Higgins
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FIG. 6. Contours of near-surface spanwise vorticity in wave/current flow normalized byuτ /D. Vertical axis
is distance below free surface normalized by free surface viscous length scale.

[46] demonstrated that the spanwise vorticity generated near the crest must necessarily be
negative (in anx− z system), while the spanwise vorticity near the trough must be pos-
itive. Figure 6 shows the mean spanwise vorticity generated near the free surface where
the vertical scale is normalized by the viscous length scaleβ−1 and is measured down from
the free surface. The wave crest is atx/λ= 0 with the trough atx/λ= 0.5. In this figure we
can clearly see the wave-induced negative vorticity generated at the crest and the positive
vorticity generated in the trough. We can also see that the vorticity generated at the free
surface is confined to two or three times the viscous free-surface boundary layer thickness
(β−1 defined in Eq. [95]). This is in agreement with the arguments of Longuet-Higgins [47].

5.2. Phase-Averaged Spatial Structure

As a precursor to examination of the turbulence beneath the waves, it is useful to compare
the instantaneous surface deformations in the wave-only, current-only, and wave/current
flows shown in Fig. 7. In the wave-only case, the flow beneath the wave is laminar, with no
significant perturbations of the waveform. In the current-only case, small dimples on the
surface develop as the surface response to the turbulence below. Tsai [11] showed similar
results in a DNS of free surface flow with a sheared current using linearized free-surface
boundary conditions for small-amplitude surface motions. In the present wave/current case
illustrated in Fig. 7c, the wave and current are interacting to produce a surface signa-
ture that is significantly different than either the wave-only or the current-only case. To pro-
vide further analysis, an instantaneous phase-averaged monochromatic wave can be defined
as the average surface deformation in the spanwise direction. When the phase-averaged wave
is subtracted from the surface of the wave/current case, the remaining surface deformation
(1η) appears as shown in Fig. 8a.

The waveform of the deformation shown in Fig. 8a is similar to linear theory for short-
crested waves [48] which has a surface deformation (ηsc) of

ηsc= ascsin(mx) cos(ny), (96)

whereasc is the amplitude of the short-crested wave,m is the wave number in the streamwise
direction, andn is the wave number in the spanwise direction. A plot of this waveform
is shown in Fig. 8b form=π, n=π , andasc= 0.2a. It can be seen that the agreement
between the two waveforms is quite good. This waveform does not appear in the wave-only
or current-only simulations, which indicates that the appearance of this wave is due to the
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FIG. 7. Free surface shape(t/T = 10): coordinate non-dimensionalized by wave amplitude; ordinate non-
dimensionalized by wave numberk.

interactions of the monochromatic wave and the current rather than to instability of the
monochromatic wave or numerical method. The apparent lack of higher order modes in
Fig. 8a should not be taken as a failure of the numerical method to resolve such modes.
The appropriate amplitude of the higher order modes is shown in Fig. 7b and is an order of
magnitude smaller than the short-crested wave mode.

The dominant scale of the short-crested wave mode is a natural resonance phenomena. The
short-crested waves produced in the present simulation move at almost the same wave speed
as the long-crested waves despite their shorter wavelength. This result is a serendipitous
confluence of the chosen geometry and wave characteristics. For other bounded domains,



SIMULATION OF TURBULENT FREE-SURFACE FLOWS 451

FIG. 8. Comparison of parasitic gravity waves in wave–current simulation to theory for short-crested waves:
coordinate non-dimensionalized by wave amplitude from wave–current case; ordinate non-dimensionalized by
wave numberk.

the resonant short-crested waves may not be supported modes. However, from theory [48],
one can demonstrate the existence of short-crested waves which move at speeds identical
to those of longer monochromatic waves for general unbounded domains. Thus, the present
results with short-crested waves provide a more correct picture of the interactions between
a turbulent current and long-crested waves than would be obtained in a simulation where the
resonant short-crested modes were not supported by the domain dimensions. Since the short-
crested waves did not occur in the wave-only simulation or the current-only simulation, the
short-crested wave field may require the existence of turbulent structures and a preexisting
monochromatic wave to initiate and maintain the short-crested wave motion. A comparison
of the instantaneous cross sections in the current-only and wave/current flows, Fig. 5, shows
that the approach of a vortex core near to the free surface may provide an initial impetus
for the short-crested waves. Since the current-only flow cannot maintain the short-crested
wave, it can be argued that energy transfer from the long-crested wave and/or the turbulence
is necessary to maintain the short-crested wave motion.

The results of the numerical simulation can be used to examine the effects of wave–
turbulence interaction. The flow is homogeneous in the spanwise direction (except for short-
crested waves, as discussed below), so we can compute phase-averaged turbulence quantities
as fluctuations from the spanwise mean to obtain two-dimensional instantaneous pictures
of the turbulence. This collapses the four-dimensional data set into a three-dimensional
data set that can be used to examine the evolution of the instantaneous turbulence field.
To fully examine the processes, comparison of the evolution of turbulence quantities for
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wave/current simulations and the current-only simulations is presently being undertaken. To
provide a more compact (but perhaps less accurate) analysis, we can further reduce the data
set by computing time-averaged mean velocity fields using detrending techniques [49]. It is
clear that the presence of short-crested waves must be taken into account when interpreting
the near-surface structure of the wave/current flows. Unlike long-crested (monochromatic)
waves, the short-crested waves are inherently three-dimensional, with velocity fluctuations
in the spanwise direction as well as the direction of wave propagation. Wave modes that
are not monochromatic provide velocity fluctuations that appear as “turbulence” when
using spanwise averaging to compute turbulence quantities. In Fig. 9 the spatial structure

FIG. 9. Mean phase-averaged velocity fluctuations normalized byuτ for wave/current simulation.
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FIG. 10. Instantaneous phase-averaged streamwise velocity fluctuations normalized byuτ .

of the time-averaged mean of the streamwise, spanwise, and vertical velocity fluctuations
is shown in the near-surface region for a wave/current simulation (case W3 in [42]). The
periodicity of the structure in the region less than the wave amplitude from the surface is
readily apparent and appears to be primarily a function of the short-crested waves (i.e.,
wave motion rather than turbulent motion). The intensification of the spanwise velocity
fluctuations on the trailing edge of the wave appears to be caused by the interaction of
bursting coherent vortices with the short-crested wave velocity field.

As an example of the instantaneous turbulence structure, Figs. 10 through 12 show the
instantaneous velocity fluctuation fields for a wave/current simulation (case W3 in [42])
and the current-only simulation. These flows were started with the same initial conditions
and run for the same period of time. In the wave/current flow, a bursting event in the
streamwise velocity fluctuation is intensified beneath the crest of the wave. Examination
of the evolution of the turbulence fields shows that the bursting phenomenon tends to
resonate with the passage of the wave. In the spanwise velocity fluctuation, Fig. 11, the
most noticeable difference is in the free-surface region, where an intense region of spanwise
fluctuation is seen along the trailing edge of the wave. This appears to be an interaction
between the bursting structure and short-crested parasitic waves that occur on the surface of
the simulation. In the vertical velocity fluctuations, the instantaneous near-surface structure
is similar to the time-averaged mean shown in Fig. 9c. In the flow core, the wave has
two effects: intensification of the vertical fluctuations and vertical oscillation of the flow
structure as the wave passes over.



FIG. 11. Instantaneous phase-averaged spanwise velocity fluctuations normalized byuτ .

FIG. 12. Instantaneous phase-averaged vertical velocity fluctuations normalized byuτ .
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6. SUMMARY

This paper presented a simulation method for free-surface flows using a boundary-
orthogonal, moving-grid, curvilinear coordinate system to solve the time-dependent, vis-
cous, incompressible Navier–Stokes equations. The method is shown to be effective in
simulating decaying vortices, laminar standing waves, and turbulent flow in an open chan-
nel with a finite-amplitude surface wave.

The numerical method has been developed for large-eddy-simulation techniques with
dynamic subgrid-scale modeling. For the first time in the literature, the subgrid-scale filtering
and modeling of nonlinear terms in the kinematic boundary condition are derived and
discussed. A novel numerical approach for integrating the kinematic boundary condition in
curvilinear space is developed. This new approach allows the kinematic boundary condition
to be integrated numerically for a free surface that may be multiple-valued in physical
space. Numerical discretization of the dynamic boundary condition to serve as a boundary
condition on the pressure-Poisson equation in a free-surface flow is presented and discussed
in detail.

The capabilities of the method are demonstrated in the simulation of a turbulent open-
channel flow with a nonlinear, nonbreaking, progressive, surface wave. The method is
designed for overturning waves, although further work on the physics and modeling of
wave breaking is necessary to demonstrate this capability. The use of this method for
small-amplitude waves is not recommended since the boundary-orthogonal nature of the
curvilinear grid is a significant complication that is unnecessary where waves are not steep.
Furthermore, the use of vertical grid lines (rather than the boundary-orthogonal method used
herein) can speed up the convergence of the pressure-Poisson equation if the hydrostatic
pressure is computed as a separate source term in the predictor step of the Navier–Stokes
solution [50]. This approach does not appear to be practical for boundary-orthogonal grids
due to the introduction of curvilinear interpolation errors into the computation of hydrostatic
pressure gradients. For these reasons, the use of the boundary-orthogonal approach outlined
in this paper should be limited to simulations of steep waves where the errors associated
with vertical grid lines would distort the dynamics of the free-surface boundary layer.
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